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ABSTRACT 

A major  area of weather  analysis  still  requiring  manual  subjective  determination is that  of locating  fronts.  The 
experiments  reported  on here concern an  attempt  to  incorporate  objective  frontal  analysis  into  the  operational  com- 
puter  routines of the U.S. Navy  Fleet  Numerical  Weather  Facility,  Montercy, Calif. 

The  synoptically-important numerically-derived frontal zone is regarded  as a hyperbaroclinic region whose 
boundaries  may be defined as quasi first-order thermal  and  moisture  discontinuitizs;  the  boundaries  are  located 
through use of suitably defined second  derivatives of various potential  temperature  parameters.  Application is 
made  to 850-mb. and  surface (or 1000-mb.) frontal  analyses on a hemispheric  basis. The  analyses  for 0000 and  1200 
GMT January 1, 1965 are  selected to  exemplify results of the most promising of the  experiments. 

Verification against  hand-derived  frontal  analyses, difficulties with  the  existing  scheme,  and  proposed modifica- 
tions to  the  continuing  program  are discussed. 

1. INTRODUCTION 
It should come as no surprise that  the  “state of the  art” 

in frontal  analysis  is  still  very  much  dependent on the 
individual  and hence inexact. One illustration will  suffice 
as evidence of the degree of subjective  variability.  Figure 
1 represents the composite of 0000 GMT March 5 ,  1964 
surface fronts  as  drawn by 16 international  and  United 
States civilian and  military  analysis  and forecast centers. 
I t  is rather  disturbing  to see such  large differences in 
frontal positions-in many  areas over 300 n. mi.-and to 
think  that such gross misplacements could figure signifi- 
cantly  in decision making involving the  national economy. 
March 5 ,  1964 is not a  singularly bad  day! A logical 
solution to  this  ever-present dilemma is accurate,  standard- 
ized, objective  frontal analysis. 

Up  to a few years ago objective  frontal analysis could, 
a t  best,  be based on subjectively analyzed input  param- 
eters.  However, the  time  has come when fields of data 
containing frontal information  are numerically produced 
in such a  manner  as to lend themselves to  an  objective 
frontal analysis. Such experiments  are  reported on here 
as performed with and on objectively  calculated fieIds of 
data  at  the US.  Navy  Fleet Numerical Weather  Facility 
(FNWF), Monterey,  Calif. 
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2. DEFINITION  OF  FRONT AND SELECTION  OF 
FRONTAL  PARAMETERS 

The definition of a front  adopted  here  is  similar  to that 
suggested by  the Southern  Hemisphere meteorologists, 
Taljaard,  Schmitt,  and  van Loon [I], in  their  exhaustive 
r6surn6 of frontal  analysis. 

The words front or numerical  front, as used hereafter, 
refer to  the warm-air boundary of a  synoptic-scale  baro- 
clinic zone of distinct  thermal  gradient;  the  frontal zone 
separates  air masses associated  with  reduced  baroclinicity 
over a considerable area.  Further,  the frontal-zone 
boundaries  are considered as  quasi  first-order  thermal and 
moisture  discontinuities.  Moreover, the hyperbaroclinic 
regio1:s [2] of interest should be  trackable in time  and  have 
space  continuity  through enough of the lower atmosphere 
to  manifest  themselves not only at  the surface but  at 850 
mb.  as well. 

From  the  outset  the aim  has been to select a minimum 
number of conservative  parameters for specifying the 
frontal zones while at  the same  time utilizing the  full 
capacity of FNWF’s  output,  with a view toward pro- 
ducing a  result  operationally usable in  real  time.  These 
are  stringent  demands. 

In  considering the selection of suitable  frontal  param- 
eters,  thought was given to  the  frontal  information 
desired by  the field meteorologist. An all-inclusive 
numerical  product  should 
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FIGURE l.”Surface  fronts  for 0000 GYT March 5, 1964  as  taken  from  analyses  made by  16 international  and  national  weather  centers. 
International  weather  centers:  National  Meteorological  Center, U S .  Weather  Bureau;  Central  Analysis Office, Meteorological 
Branch,  Department of Transport,  Canada;  Japanese Meteorological  Agency;  British  Meteorological  Office;  Zentralamt,  Deutscher 
Wetterdienst;  Icelandic  Weather  Bureau. U.S. Navy  Weather  Centrals:  Alameda,  Calif.;  Guam;  Pearl  Harbor,  Hawaii. U.S. 
Navy  Weather Facilities:  Argentia,  Newfoundland:  Miami:  Norfolk,  Va.:  Quonset  Point, R.I.: San  Diego;  Sangley  Point,  Philippine 
Islands;  and  Yokosuka,  Japan. 

a.  locate  the warm-air boundary of each  synoptic-scale 
baroclinic zone at  one or more levels; 

b. attlach  a  “strength”  label  to  every  segment of a 
front; 

c. distinguish  fronts  according to movement:  warm, 
cold,  stationary; 

d.  determine  the frontolyticaljfrontogenetical character 
of the  fronts; 

e. relate  the  frontal-zone slope and  stage of develop- 
ment  to  vertical  motion, clouds, precipitation,  and devel- 
opment of pressure  systems;  and 

f .  identify  the  air masses separated  by  the  fronts. 

With  due  regard for the  theoretical,  operational,  and 
numerical  aspects of frontal  analysis,  the wet-bulb po- 
tential  temperature (e,), equivalent  potential  tempera- 
ture &), potential  tsemperature (e), and  their  derivatives 
were initially  selected, collectively, as  prime  parameters 
to specify the  location of fronts.  The wind field  was re- 
served for a  secondary role, hydrometeors for a  last 
consideration. 

3. NUMERICAL  INPUT  DATA AND ANALYSIS 

The  data used as input in the  experiments  are  those 
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objectively  analyzed  by FNWF from worldwide coverage 
of more than 2,500 surface  reports and 500 raobs.  These 
data  are processed at  12-hr. intervals  to  produce  objective 
analyses of sea level pressure,  height, and  temperature for 
all mandatory pressure  surfaces  up to 200 mb.,  and dew 
point depression at  terrain level, 850, 700, and 500 mb. 

Except for terrain-level  parameters the above  analyses 
are  produced  on  a square  grid, 63 x 63 ,  wherein the  equator 
is an inscribed circle. The mesh length is 381 km. at  60' 
latitude on a  Northern  Hemisphere  polar  stereographic 
projection. 

The upper-air  information is processed in a scheme in 
which the mandatory-level data of the  transmitted sound- 
ings are  analyzed  to fit a five-layered atmosphere in which 
temperature is linear in p k  (where p is pressure; k= 
Rd/cp; R,  is the gas constant;  and c p  is the specific heat 
constant for dry  air).  The lapse rate (or stability) of 
each layer is initially specified to be consistent  with the 
actual  thickness. The objective  constant pressure an- 
alyses are in hydrostatic agreement in the vertical  and 
compatible in the horizontal. The fields of temperature 
and  moisture so produced  are  adequate for computation of 
the desired potential  temperature  parameters. Other 
details of the  mass-structure model used by FNWF may 
be  obtained from [3]. 

The  determination of e,, e,, or 0 at  the surface or terrain 
level is more complex, since the  station or terrain pressure 
for land areas is not  available from the surface  synoptic 
reports.  To  remedy  this,  terrain pressure and tempera- 
ture  are  interpolated from the analyzed  upper-air data and 
the height of the  terrain on an octagonally-bounded grid 
of 1,977 points. 

The finite difference approximations to  the  temperature 
derivatives utilize the  quart,ic interpolation polynomials for 
centered differences, in the form 

Az( ) at  i = O = -  ( ) i - 2 + 8 [ (  ) i + ~ - (  )i-*I-( )*+z 12d 3 } 
(1) 

where d=mesh  length.  The first  derivatives were proc- 
essed with  a low pass  filter,  having  a  cut-off  wavelength 
of four mesh lengths, before further differentiation 

4. NATURE OF EXPERIMENT 
Initial experimentation  with fields of potential  tempera- 

ture  parameters  and  their  derivatives was carried out on 
a hemispheric basis a t  850 mb.  rather  than  at  terrain or 
sea level. Several  reasons suggested this  approach, n e  
the  least of which is the distinctiveness of fronts (especially 
polar) a t  850 mb.  and  the  apparent lack of mesoscale 
noise so evident in  the surface data. 

Moreover, our  first  attempts  at  frontal analysis were 
somewhat  idealistic and involved first e,, then Be. We 
were initially influenced by  the  Canadian school of 
thought,  as described by Godson 121 and Anderson. Boville. 

FIGURE 2.-Computer printouts for 850 mb., 0000 GMT January 1,' 
1965. (a) Grid point values of 8 in "A. Dummy-number 
shading at interval of loo. Skeleton latitude-longitude grid 
identifies area. (b) Grid point values of IVOl in units of lO-l"C./ 
(100 km.). Dummy-number shading at interval of 10 units 
starting  with 10. (c )  Grid point values of GGO in units of 
10-20C./(100 km.)*. Dummy-number shading in positive GGe 
areas only  at interval of 10 units  starting with 5. Outlined 

" , rectangular area is expanded in figure 3. 
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FIGURE 3.-(a) Field of 0 ( O A . )  and  derived  frontal  parameters for the rectangular  North  Atlantic  area  shown i n  figure 2.  Troughs  in 
GGO field are  shown  by  dashed lines, ridges  by  dashed  lines  with  superposed  symbols. (b) (VO( in O C . / ( l O O  km.)  and  derived  frontal 
parameters  as  calculated  from figure 3a. Ridges  and  troughs in [VBl field shown  by  dotted line. Other lines as  in 3a. ( c )  Field 
of GGe= -(V1V(e)1.ve)/lveJ in  OC. / ( lOO km.)2 as calculated  from figrrrc 3a.  Other lines 85 in 3a. (d) Cross-sectional view of 0, loel, 
and GGe taken  along  line N in figures 3 a, b, c .  
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and McClellan [4] and  others in the 1 9 5 0 ' ~ ~  and given 
additional  impetus  by  statistics on characteristic air-mass 
values  for em by Harley [5] in 1962. However,  certain 
deficiencies in adequately  depicting hemispheric moisture 
fields  resulted  in the  shift of experimental  emphasis to 
fields of e and  its derivatives. Unless said  otherwise, the 
following discussion refers to e fields only. 

5. NUMERICAL  FRONTAL  PARAMETER AND ITS 
SIGNIFICANCE 

The  frontal  parameter finally selected is simple, easily 
computed,  and  its application to locate  a  front  simulates 
in  an objective  manner the procedure followed by a 
synoptic meteorologist. Specifically, the  parameter is 
defined as the directional derivative of the gradient of 0 along 
its gradient, namely 

G G e = - v m z  -VlVel -ne 
lvel (2) 

where ne is a unit  vector in the direction of ve. 
Actual FNWF computer  printouts of a  limited  section 

of the objectively  analyzed fields of e, /vel, and GGe at 
850 mb., 0000 GMT January 1, 1965 are shown in figure 2. 
These  printouts will  be referred to  later. 

To  obtain  an  understanding of the properties and uses 
of a GGO field, a small  section of figures 2 a, b,  and c  is 
enlarged and analyzed to become figures 3 a, b, c. 

Figure 3a shows a subjective  analysis of the numerically 
computed field of e; the isentropic field obviously contains 
two zones of marked  gradient.  Figures 3 b  and  c show 
the derived fields of [vel and GGe. I t  is to be noted 
that  the axes of maximum and minimum loel in figure 3b 
nearly coincide with zero GGe in figure The axis of 
maximum /Vel defines the  centrum of the baroclinic zone 
while the axis of minimum pel  locates the  centrum of the 
"barotropic"  region. 

The locus of points along which lVOl changes most 
rapidly  in  the  direction of ne defines the ridge (maximum 
GGO) and trough (minimum GGS) in the GGe field. In 
turn,  the ridge and trough locate the warm and cold air 
boundaries of the  frontal zone, respectively. The axes 
of maximum and minimum GGS are superimposed on 
figures 3 a, b, c. 

The transverse  width of the  frontal zone (distance 
from maximum to minimum in the GGO field) and maxi- 
mum  magnitude of p e l  within the zone may be used 
singly or in combination as indicators of the  strength of 
each segment of the  front.  The  apparently high correla- 
tion existing between maximum /Vel in the zone and 
maximum GGO at  the adjacent  frontal  boundary also 
allows use of the  latter as a strength indicat,or. 

A cross-sectional view of the  three fields of e, p e l ,  and 
GGe (fig. 3d)  taken along N in figures 3 a,  b, and  c con- 
firms the relationships existing among the various  analyses 
and allows a  point  by point comparison of the  three fields. 

3 Imperfect  coincidence here and in figure 3d is likely its u result of finite  difference 
approximations to the analytic expressions. 

7834'16 CX"6L-3 
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FIGURE 4.-GGe (solid  lines)  analysis at 850 mb. for 0000 GMT 
January 1, 1965;  units 10-20C./(100 km.)2; isolines 5, 15, 25, 
etc. For explanation see text,  section 6. 

It is to be noted that, more generally,  equation (2) 
may be written as an  operator 

GG(T)="vlV(T)l .ncn ( 3 )  

which is applicable to any variable (<) with defined first 
and second derivatives. It follows that  the  mathematical . 
and physical significance of  GGe, just discussed, is perti- 
nent  to  the more universal  application of the GG operator. 

6. DISCUSSION OF FRONTAL-ANALYSIS 
ILLUSTRATIONS 

The analyses for 0000 and 1200 GMT, January 1, 1965 
have been selected to  illustrate  the numerical  experiment 
in frontal  analysis. The two map times highlight both 
t,he merits  and deficiencies of the present state of the 
technique. 

Analyses of the various fields, as discussed hereafter, 
were traced  by  hand from FNWF numerical printouts  to 
1/30,000,000 polar stereographic base maps. In  this way 
attention may be focused upon the  major  features  sup- 
porting an objective frontal analysis and not on extraneous 
features or the maze of numbers and peculiarities of con- 
t,ouring found on computer. printouts (fip. 2). The 
FNWF  automated line-drawers are being programed to 
accomplish the complete  analysis task on  a  real-time 
basis; however, portrayal for the user 'is not our concern 
here. 

Figure 4 is the 850-mb. GGS chart for 0000 GMT January 
1, 1965. This figure and figures 6 and 8 show certain 
notable lines and  points, whose legend is explained below: 

a.  The isolines of positive GGe only are shown (solid 
lines). The analysis interval is O.l°C./(l 00 km.)2,  starting 
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with  the 0.05 isopleth.  With reference to  sectim  5  and 
figures 3 c  and  d,  the positive GGO values are  found in the 
area between the maximum and minimum  potential 
temperature  gradient on the wa.rm-air side of the former. 

b.  The GGe ridge or line of maximum GGO (dashed) 
represents t.he numerical  850-mb. front.. Assuming  sym- 
metry of the  frontal zone about  the maximum gradient, 
the  area between the  ridge  and  the 0.05 line t,oward the 
cold air  represents  an  approximation to  the warmest 
half of the hyperbaroclinic zone.4 In  the real  atmosphere 
this  area is generally less than one-half the  area of the 
frontal zone. 

c. The  dotted line indicates  the surjme fronts for the 
same  time,  as  taken  from  the final analysis of the  Northern 
Hemisphere  surface  chart of the  National Meteorological 
Center, U.S. Weather  Bureau  (USWB).  The surface 
Highs (H) and Lows (L)  are positions taken from the same 
analysis.  The USWB’s 850-mb. pressure center  and 
frontal  analyses were not used for this comparison since 
the  area for which they  are  available is too limit,ed. 

d.  Harley [5] defines, statistically,  mean  and  standard 
deviations of e, for each of four  prominent  air  masses 
(maritime  tropical,  maritime  polar,  maritime Arctic, and 
continental  Arctic). If the  air  masses  are  taken  as quasi- 
barotropic,  the  statistics  may be interpreted  to be  broadly 
representative of mean  frontal values. Values for Janu- 
ary follow (Harley’s & values have been converted  to ie): 

Front tie(OA.) Air mass 

maritime (m) 303. 4 marit,ime  polar 
Arctic (a) 288. 5 maritime Arctic 

polar  (PI 315. 3 tropical 

The inclusion of standard  deviations  determines an 
equatorward  boundary (in January iep+3u=324.60 A.) 
beyond which less than 1 percent of the  polar  fronts are 
expected,  and a similar - boundary  relative  to  the Arctic 
front (in January ee,-3u=278.00A.).  These  two 
isolines are shown as  dash-dotted lines. 

The  analysis for areas  south of  15’ N. is generally not 
shown as this lntitude  represents  a reasonable geographical 
limit  to  acceptable  FNWF  objective analysis and is 
considered close to the  equatorward  boundary of recog- 
nizable  fronts. 

7. EXAMPLES OF FRONTAL  ANALYSIS  AT 850 ME. 

0000 GMT JANUARY 1, 1965 

The field of positive GGe on figure 4 (0000 GMT Janu- 
ary 1, 1965)  is both  interesting  and  informative.  There 
are  distinct  and  continuous  elongated zones (mostly 
latitudinal)  extending  thousands of miles in some cases 
and possessing orientation  and  wavelike  features  resem- 

the cold  air) is  a  better measure of frontal-zone  half width. IIowever,  the peculiarities  of, 
4 Without douht,  the transverse distance from the ridge to  the wro CCe line  (toward 

and undesirable  noise  near, zero Oca (see  fig. Zc) in  the  relative barotropic  regions and 
sparse  data  areas  suggested omitting  the isoline  of %IO CCB in these  figures,  especially 
since  the figures presented have as prime  purpose estahlishment  of thefeasibilily ofloenling 
jronls. 

bling fronts. Along the zones there  appear  centers, in 
some cases with  magnitudes in excess of  0.35’ C./(lOO km.)2 
(see North  Atlantic Ocean  near 35’ N.); such values are 
associated  with  the  intensely  develsped baroclinic regions. 
In addition,  there  are  many  small  isolated  areas of positive 
GGe with  values  greater  than 0.05’ C./(lOO km.) 2 (see 
fig. 2c, vicinity of Cuba). Since such  areas  appear  to 
have  little synoptic-scale significance in time or space, 
GGe regions with six or fewer  grid point values greater 
than 0.05 units  and obviously not associated with  a 
closely adjacent +GGe zone of greater  import were omit- 
ted in transposing  from  the  grid  printout.  Patterns a t  
the lower latitudes  appear to be  unrealistic in number, 
form,  and  strength as a  redult of the  combination of real 
frontal zones with  boundary  and  sparse-data effects on the 
ob j ec  tiv’e analysis. 

Next  note  the  relation of numerical 850-mb. and USWB 
surface fronts.5 . The  display is typical of results  on  other 
days.  The  numerical 850-mb. front is  generally on the 
cold-air side of the  manually analyzed  surface front,  with 
smallest  frontal-zone slopes near  warm  and  stationary 
fronts.  Elevation of land surfaces must be considered 
in  an  evaluation of this  aspect of the figure. Verification 
is best where data  are  most plentiful-an  encouraging 
result. In  some cases where  a  USWB front or frontal 
wave exists (as  near 45’ N., 18.0°, and 40’ N., 60’ W.) 
but a  numerical  front. is obviously absent  there is question 
of  the  actual existence of a  front in the sense of the defini- 
tion given here.  A significant difference between the 
number of numerical  and  hand-analyzed  fronts is noted, 
especially over Asia and  low-latitude  areas.  This  is 
mainly  due to lack of verifying manual  analyses, pre- 
mature frontolysis in sparse-data areas, and  the  different 
criteria employed  to justify existence of fronts.  However, 
the  analysis of three  numerical  fronts along many longi- 
tudes resembles the  Canadian  frontal model [4]. 

The average difference between manual  (USWB 850-mb. 
analysis,  limited  to  North America,  extreme northeastern 
Pacific,  and  northwestern  Atlantic)  and numeFica1 frontal 
positions  amounts  to 3.5’ latitude over the Pacific, 1 . 7 O  
latitude over the  Atlantic,  and less than 0.4’ latitude  over 
the  dense-data  United  States  area. 

Several  factors  detract from  a “best”  analysis. The 
processed  grid-point  data  are too gross to single out minor 
or  multiple  frontal  variations  contained  within  a  fraction 
of a grid distance. Besides, the  data used are  not  “total”; 
the 0000 GMT operational  charts generally contain  about 
85  percent of the  practical possible amount of radiosonde 
data,  the figure dropping  to  about 70 percent for the 
1200 GMT maps. Analysis deadlines are, of course, neces- 
sary  as  the  product is perishable.  Amount of data  must 
be weighed against  immediate  need  by  the field meteorolo- 
gist.  However,  the  percentage of possible data considered 

5 Messrs. P. E. Carlson, J. L. Galloway, and P. C. Hearing [6] of the Canadian  Wcather 

the FNWF numerical  fronts. Thsy report “ , . , excellent agreement with  ths machinP- 
Survice have compared  their  Central Analysis Office hand analyses of Janl-ary 1, 1966 to 

computed  lronts.” 
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FIGURE 5.-Numerical 850-mb.  fronts from figure 4 (heavy  dashed  lines) superimposed on the 850-mb. FNWF (a)  isotherm  analysis and 
(b) contour  analysis. 

for  numerical  analysis, say. 4 hr.  after  observation  time, 
easily exceeds that normally considered by  an  individual 
analyst. 

Next, consider the  objective  frontal analysis when it is 
superimposed on the  FNWF 850-mb. temperature (fig. 
5a)  and  contour field  (fig. 5b).  The GGO field, of course, 
is just a reflection of the  frontal  character of the  isotherm 
field and  as  such  cannot exceed the information of this 
field. Note  that in many cases the  fronts lie in troughs 
and pass through low centers  or  are  only  slightly displaced 
from them.  The  fronts  at  subtropical  latitudes  rather 
remarkably  pass  through (or nearly so) many 850-mb. low 
centers,  perhaps giving evidence of internal consistency 
in  the analysis model used by  FNWF.  The  reader will 
also note  in  this  and  subsequent figures that  the numerical- 
front  analysis  makes  little or  no attempt  to fit the  fronts 
into preconceived models. However,  such  a  procedure 
becomes quite suggestive when superimposing the  contour 
and  frontal  patterns  as in figure 5. 

1900 GMT  JANUARY 1, 1965 

Next,  the 850-mb. chart for 1200 GMT January 1, 1965 
is shown (fig. 6).  Note  the  same  features  as in figure 4. 
The  patterns  appear more  segmented  over the  Eastern 
Hemisphere. Since the  data  count is down for this  time 
and  the USWB  surface  frontal  structure is  more  complex 
over the  United  States (frontogenesis and frontolysis over 
central  and  southern  United  States,  respectively)  the 
comparative  result  (USWB  vs. FN'WF) on a  hemispheric 
basis is not as good as a t  0000 GMT. Here,  the  differences 
between the  FNWF and  USWB  850-mb.  frontal positions 
amount  to 2.8',  2.3', and 1.7' for the Pacific, Atlantic, 
and  United  States  areas, respectively. 

TIME CONTINUITY, 0000 TO 1 PO0 GMT JANUARY  1,1965 

A measure of, the  temporal  continuity is given by  the 
12-hr. history  chart (fig. 7) .  Solid lines  represent the 
1200 GMT January 1, 1965 fronts while dashed lines repre- 
sent  the 0000 GMT solutions. The USWB fronts, only 
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FIGURE 6.-GGO at 850 mb. for 1200 GMT January 1, 1965; legend 
and  units  same  as in figure 4. 

FIGURE 7.-Time continuity of numerical 850-mb.  fronts  January 1, 
1965 (0000 GMT, dashed  lines; 1200 GMT, solid  lines),  and U.S. 
Weather Bureau surface fronts  shown by usual  frontal  symbols 
(0000 GMT, symbols not connected; 1200 GMT, symbols  connected 
by  line). 

show the  warm, cold, and  stationary symbols. Similar 
wavelike features,  developments,  and  movements  are 
trackable in the  hand-analyzed  surface  and  the  numerical 
fronts.  Even over the  poor-data  area of Asia there is  a 
close relation in number  and  orientation of numerical 
fronts a t  0000 and 1200 GMT. 

The  North American and  Atlantic  fronts, in particular, 
agree well with  the  geostrophic  movement implied by  the 

F N W F  850-mb. contour  patterns  at 0000 (fig. 5) and 
1200 GMT (not  shown). 

8. EXAMPLES OF FRONTAL  ANALYSIS  AT  THE 
SURFACE AND OTHER  CHARTS 

Space  doesn't  permit  portrayal of all the  many  types 
of experimental  charts, but two other  aspects  are  worthy 
of mention.  A  surface  frontal  analysis  is, of course, 
most  desirable.  Figure 8,  0000 GMT January 1,  1965, 
shows  such  a chart.  Multiplicity of $GGe zones, in 
many cases small isolated regions, gives this  chart  an 
unsatisfactory  segmented  appearance  relative  to  the 
850-mb.  depiction.  There is apparent magnification of 
G& values in areas of elevated  topography, especially 
in the  Himalayan region of Asia and over  Mexico. This 
is understandable since the  derivatives  have  been  taken 
along the sloping terrain  and e normally increases with 
elevation. In  the case of Mexico, boundary  problems 
add to the  complexity.  However,  where data  are  best, 
as over the  United  States, verification and  pattern con- 
sistency  are  best. For instance,  the comparison  between 
USWB and FNWF surface  fronts  shows  an  average 
separation of <0.8' latitude for the  United  States, 
2.9' latitude for the  Atlantic  and  eastern Pacific, and 
2.6' latitude for the  western Pacific area. 

The space  continuity  chart (fig. 9) shows  considerable 
pattern  relation between the numerical fronts a t  850 mb. 
and  the surface,  particularly for those  fronts which  bear 
close relation to  the USWB  frontal  analysis. It is not 
surprising t o  find steep or abnormal slopes where  the 
fronts  are of the cold type when the  rather  large  distances 
separating  grid-point  data are considered. Largest dis- 
crepancies between  surface p.nd 850 mb.  are  found in the 
vicinity of elevated  terrain.  There is a  suggestion,  in 
the comparison of surface  and 850-mb. charts,  that  the 
size of the mesh length or manner in which the  data  are 
numerically processed does not allow adequate  differentia- 
tion of frontal  information at  levels separated  by 5,000 
ft. or less. 

Thus,  the 850-mb. portrayal  presently  does excel the. 
terrain-level  chart on the basis of quite  limited com- 
parisons to  the  USWB  analysis. The  variations  in 
surface  elevation  and  other local effects may  very well 
necessitate a shift to a near-surface level, or to  a low 
tropospheric thickness field in  order to achieve a satis- 
factory "surface" frontal analysis. 

The wind has been  handled as. a secondary  frontal 
parameter  but nevertheless is important for consideration 
of horizontal cyclonic shear,  movement of fronts,  and 
developmental  characteristics of the  frcntal zone. Figure 
10 shows the field of geostrophic shear at 850 mb., 0000 
GMT January 1,  1965. The + symbols  indicate  areas 
of positive (cyclonic) shear of the geostrophic wind  com- 
ponent parallel t o  the  isentropes. In  all cases the  shear 
is less than 4 m. sec."(100 km.)". Most of the  numerical 
fronts are found in positive shear  areas.  Cyclonic  shear 
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FIGURE 8.-GGe at   the  surface  for 0000 GMT January 1, 1965; 
legend and  units  same  as  in  figure 4. 

FIGURE 9.-Space continuity of numerical  fronts (surface,  solid 
' lines;  850  mb., dashed lines) for 0000 GMT January 1, 1965. 

tends  to be at a maxirnutn on the cold side of the  front, 
as expected fol a first-order discontinuity  situation. 
Positive values appear especially in the  area of frontal 
wave peaks, while anticyclonic  shear  appears along fronts 
near  their  most  equatorward  extension;  the  latter is not 
unreasonable since the narrow zones of cyclonic shear 
found here are difficult to  portray  by  hand or computer 
analysis. 

9. CONCLUSION 

In  conclusion, the  authors suggest that  the experimental 
results thus  far indicate the feasibility of hemispheric 
objective frontal analysis on low-troposphere, constant- 
pressure  surfaces.  However, the  ultimate poal is a three- 
dimensional portrayal of frontal zones at  all levels. Our 
present and  future effcrts to achieve this goal include: 

a. continued  testing of various temperature  parameters 
in order to  obtain  a  frontal  locator considered optimum 
in view of t.he complicating effects of terrain; 

b. improving the moisture  product t o  allow full use of 
Be (vice 0) and its derivatives for fronkal analysis; 

c. devising a  method of graphical  representation similar 
to  the present hand-produced  analyses of fronts; 

d. varying the mesh length of the  grid; in particular, 
reducing its size  in dense-data  areas and  at  the surface to 
achieve great,er  detail in frontal  analysis; 

e. studying  extensively case histories of GGe outputs for 
all seasons to allow discrimination of baroclinic zones as 
frontal or nonfrontal  and/or those produced by spurious 
data  and improper numerical-analysis guess fields; 

f. documenting  characteristics of numerical  frontal 
patterns in relation to  stages of frontal development ; 

FIGURE 10.-Shear of the  geostrophic wind component  parallel  to 
isentropes at 850 mb., 0000 GMT January 1, 1965. Units: 10-Im. 
set.-* (100 km.)-l; isolines 0, +20. Cyclonic  shear  area  indi- 
cated  by  plus  symbols,  anticyclonic  shear  areas  by  minus  symbols. 

g. establishing the climatology of numerical baroclinic 
zones with ee and/or 0 fields; 

h. incorporating the wind field more prominently, 
especially cyclonic shear, in locating fronts; 

i.  extending the program to higher levels (as 700 and 
500 mb.) ; 

j .  placing the  frontal  product in proper relation to 
present and  future numerical  products for maximum real- 
time  operational use. 
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Finally, it, is to be noted that when time and space 
aspects of the analyzed  thermal field are considered, the 
concept, of a front becomes a rather  restricted view of the 
situation.  Rather one should fit this entity  into a more 
general  three-dimensional scheme of baroclinic zones.6 In 
this sense the  frontal problem becomes a subordinate 
problem. This broader  perspective will be basic to our 
future  experimentation  and development. 
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